Graphing $y=a x^{2}+b x+c$ Lesson 8.4

Key Idea

Properties of the Graph of $y=a x^{2}+b x+c$

- The graph opens up when $a>0$ and the graph opens down when $a<0$.

Key Idea

Properties of the Graph of $y=a x^{2}+b x+c$

- The graph opens up when $a>0$ and the graph opens down when $a<0$.
- The y-intercept is c.

Key Idea

Properties of the Graph of $y=a x^{2}+b x+c$

- The graph opens up when $a>0$ and the graph opens down when $a<0$.
- The y-intercept is c.
- The x-coordinate of the vertex is $-\frac{b}{2 a}$.

Key Idea

Properties of the Graph of $y=a x^{2}+b x+c$

- The graph opens up when $a>0$ and the graph opens down when $a<0$.
- The y-intercept is c.
- The x-coordinate of the vertex is $-\frac{b}{2 a}$.
- The axis of symmetry is $x=-\frac{b}{2 a}$.

Key Idea

Properties of the Graph of $y=a x^{2}+b x+c$

- The graph opens up when $a>0$ and the graph opens down when $a<0$.
- The y-intercept is c.
- The x-coordinate of the vertex is $-\frac{b}{2 a}$.
- The axis of symmetry

is $x=-\frac{b}{2 a}$.

Find (a) the axis of symmetry and (b) the vertex for $y=3 x^{2}-18 x+7$.
a). The Axis of Symmetry is $-\frac{b}{2 a}$.
$a=3 \quad b=-18$
$x=-\frac{(-18)}{2(3)}$
$x=\frac{18}{6}$
$x=3$
The Axis of Symmetry is $x=3$.

Find (a) the axis of symmetry and (b) the vertex for $y=3 x^{2}-18 x+7$.

The Axis of symmetry always goes through the vertex. Thus, the axis of symmetry gives us the x-coordinate of the Vertex.
b) Substitute the x-value into the function to find the y - coordinate of the vertex.
$y=3(3)^{2}-18(3)+7$
$y=3(9)-54+7$
$y=27-47$
The vertex is $(3,-20)$.
$y=-20$

On Your Own

Find (a) the axis of symmetry and (b) the vertex of the graph of the function.

1. $y=3 x^{2}-2 x$
2. $y=x^{2}+6 x+5$
(a). $x=\frac{1}{3}$
(a). $x=-3$
(b) $\left(\frac{1}{3},-\frac{1}{3}\right)$
(b) $(-3,-4)$
3. $y=-\frac{1}{2} x^{2}+7 x-4$
(a). $x=-7$
(b) $\left(-7, \frac{41}{2}\right)$

EXAMPLE 2 Graphing $y=a x^{2}+b x+c$

There are 3 steps to graphing a parabola in standard form.

STEP 1: Find the Axis of symmetry using: $-\frac{b}{2 a}$ STEP 2: Find the vertex.

STEP 3: Find two other points and reflect them across the Axis of symmetry. Then connect the five points with a smooth curve.

MAKE A TABLE

using x - values close to the axis of symmetry.

EXAMPLE 2 Graphing $y=a x^{2}+b x+c$

Graph : $y=2 x^{2}-4 x-1$. Describe the domain and range.

STEP 1: Find the Axis of symmetry

$$
x=\frac{-b}{2 a}=\frac{4}{2(2)}=1
$$

STEP 2: Find the vertex
Substitute in $x=1$ to find the y-value of the vertex.
$y=2(1)^{2}-4(1)-1=-3$

EXAMPLE Graphing $y=a x^{2}+b x+c$

Graph: $y=2 x^{2}-4 x-1$. Describe the domain and range.
STEP 3: Find two other points and reflect them across the Axis of symmetry. Then connect the five points with a smooth curve.

x	y
2	-1
3	5

$$
\begin{aligned}
& y=2(2)^{2}-4(2)-1=-1 \\
& y=2(3)^{2}-4(3)-1=5
\end{aligned}
$$

Domain: all real \#'s. Range: $y \geq-3$.

Key Ideas

Maximum and Minimum Values

The y-coordinate of the vertex of the graph of $y=a x^{2}+b x+c$ is the maximum value of the function when $a<0$ or the minimum value of the function when $a>0$.

$$
y=a x^{2}+b x+c, a<0
$$

$$
y=a x^{2}+b x+c, a>0
$$

example 3 Finding Maximum and Minimum Values

Tell whether the function $f(x)=3 x^{2}-18 x-6$ has a minimum value or a maximum value. Then find the value.
Since $a=3$ and $3>0$, the parabola opens up and the function has a minimum value. To find the minimum value, find the y-coordinate of the vertex.
Step 1: Find the x-coordinate of the vertex.

$$
x=-\frac{b}{2 a}=-\frac{(-18)}{2(3)}=\frac{18}{6}=3
$$

Step 2: Substitute 3 for x .

$$
\begin{aligned}
f(3) & =3(3)^{2}-18(3)-6 \\
& =27-54-6 \\
& =27-60
\end{aligned}
$$

$$
=-33
$$

The minimum value is -33 .

On Your Own

Tell whether the function has a minimum or maximum value. Then find the value.

$$
\text { 4. } g(x)=8 x^{2}-8 x+6
$$

$$
\text { 5. } h(x)=-\frac{1}{4} x^{2}+3 x+1
$$

minimum;
maximum;

$$
\begin{aligned}
x & =-\frac{(-8)}{2(8)}=\frac{1}{2} \\
g(0.5) & =8(0.5)^{2}-8(0.5)+6 \\
& =2-4+6 \\
& =4
\end{aligned}
$$

$$
x=-\frac{3}{2\left(-\frac{1}{4}\right)}=\frac{3}{\frac{1}{2}}=6
$$

$$
\begin{aligned}
h(6) & =-\frac{1}{4}(6)^{2}+3(6)+1 \\
& =-9+18+1 \\
& =10
\end{aligned}
$$

EXAMPLE (4. Real-Life Application

The function $f(t)=-16 t^{2}+80 t+5$ gives the height (in feet) of a water balloon t seconds after it is launched. Use a graphing calculator to find the maximum height of the water balloon.

Step 1: Find the x-coordinate of the vertex.

$$
x=-\frac{b}{2 a}=-\frac{80}{2(-16)}=\frac{80}{32}=\frac{5}{2}
$$

Step 2: Substitute 2.5 for x .

$$
\begin{aligned}
f(2.5) & =-16(2.5)^{2}+80(2.5)+5 \\
& =-100+200+5 \\
& =105
\end{aligned}
$$

The maximum height of the water balloon is 105 feet.

36. AIR CANNON

At a basketball game, an air cannon is used to launch T-shirts into the crowd. The function $y=-\frac{1}{8} x^{2}+4 x$ gives the path of a T-shirt. The function $3 y=2 x-14$ gives the height of the bleachers. In both functions, y represents the height (in feet). At what height does the T -shirt land in the bleachers?
The answer to this problem is where the parabola and line intersect.
Step 1: Rewrite the linear function in slope-intercept form.

$$
y=\frac{2}{3} x-\frac{14}{3}
$$

Step 2: Set the two functions equal to each other.

$$
\frac{2}{3} x-\frac{14}{3}=-\frac{1}{8} x^{2}+4 x
$$

Step 3: Get all terms on one side, then solve for x.

36. AIR CANNON

At a basketball game, an air cannon is used to launch T-shirts into the crowd. The function $y=-\frac{1}{8} x^{2}+4 x$ gives the path of a T-shirt. The function $3 y=2 x-14$ gives the height of the bleachers. In both functions, y represents the height (in feet). At what height does the T -shirt land in the bleachers?
The answer to this problem is where the parabola and line intersect.
Step 3: Get all terms on one side, then solve for x.

$$
\frac{1}{8} x^{2}+\frac{2}{3} x-4 x-\frac{14}{3}=0
$$

Step 4: Clear the denominators by multiplying by the LCM, which is 24 .

$$
3 x^{2}+16 x-96 x-112=0
$$

Step 5: Combine Like Terms.

$$
3 x^{2}-80 x-112=0
$$

36. AIR CANNON

At a basketball game, an air cannon is used to launch T-shirts into the crowd. The function $y=-\frac{1}{8} x^{2}+4 x$ gives the path of a T-shirt. The function $3 y=2 x-14$ gives the height of the bleachers. In both functions, y represents the height (in feet). At what height does the T -shirt land in the bleachers?

The answer to this problem is where the parabola and line intersect.
Step 6: Use Bottoms Up Method .

$$
3 x^{2}-80 x-112=0
$$

$$
\begin{aligned}
& \left(\frac{-84)(}{3} \frac{+4)}{3}\right. \\
& (x-28)(3 x+4) \\
& x-28=0 \text { or } 3 x+4=0 \\
& x=28 \text { or } x=-\frac{4}{3}
\end{aligned}
$$

36. AIR CANNON

At a basketball game, an air cannon is used to launch T-shirts into the crowd. The function $y=-\frac{1}{8} x^{2}+4 x$ gives the path of a T-shirt. The function $3 y=2 x-14$ gives the height of the bleachers. In both functions, y represents the height (in feet). At what height does the T -shirt land in the bleachers?

The answer to this problem is where the parabola and line intersect.
Step 7: Substitute 28 in for x to find the y -coordinate. Use either function.

$$
\begin{aligned}
x & =28 \\
3 y & =2(28)-14 \\
3 y & =56-14 \\
3 y & =42 \\
y & =14 \quad \text { The t-shirt lands in the bleachers at } 14 \mathrm{ft} .
\end{aligned}
$$

